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This paper presents a Kalman filter based adaptive disturbance accommodating stochastic control scheme for
linear uncertain systems to minimize the adverse effects of both model uncertainties and external disturbances.
Instead of dealing with system uncertainties and external disturbances separately, the disturbance accommo-
dating control scheme lumps the overall effects of these errors in a to-be-determined model-error vector, and
then utilizes a Kalman filter in the feedback loop for simultaneously estimating the system states and the
model-error vector from noisy measurements. Since the model-error dynamics is unknown, the process noise
covariance associated with the model-error dynamics is used to empirically tune the Kalman filter to yield
accurate estimates. A rigorous stochastic stability analysis reveals a lower bound requirement on the assumed
system process noise covariance to ensure the stability of the controlled system when the nominal control action
on the true plant is unstable. An adaptive law is synthesized for the selection of stabilizing system process
noise covariance. Simulation results are presented where the proposed control scheme is implemented on a two
degree-of-freedom helicopter.

Keywords: Disturbance accommodating control; Stochastic adaptive control; Kalman filter; Stochastic
stability

1 Introduction

Uncertainty in dynamic systems may take numerous forms, but among them the most significant
are noise/disturbance uncertainty and model/parameter uncertainty. External disturbances and
system uncertainties can obscure the development of a viable control law. This paper presents
the formulation and analysis of a stochastic robust control scheme known as the Disturbance
Accommodating Control. The main objective of Disturbance Accommodating Control (DAC) is
to make necessary corrections to the nominal control input to accommodate for external distur-
bances and system uncertainties. Instead of dealing with system uncertainties and disturbances
separately, DAC lumps the overall effects of these errors in a to-be-determined term that is used
to directly update a nominal control input.
Disturbance accommodating control was first proposed by Johnson in 1971 (Johnson 1971).

Though the traditional DAC approach only considers disturbance functions which exhibit wave-
form patterns over short intervals of time (Johnson and Kelly 1981), a more general formulation
of DAC can accommodate the simultaneous presence of both “noise” type disturbances and
“waveform structured” disturbances (Johnson 1984, 1985). The disturbance accommodating
observer approach has shown to be extremely effective for disturbance attenuation (Biglari and
Mobasher 2000, Profeta et al. 1990, Kim and Oh 1998); however, the performance of the observer
can significantly vary for different types of exogenous disturbances, which is due to observer gain
sensitivity.
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This paper presents a robust control approach based on a significant extension of the con-
ventional observer-based DAC concept, which compensates for both unknown model parameter
uncertainties and external disturbances by estimating a model-error vector (throughout this
paper the phrase “disturbance term” will be used to refer to this quantity) in real time. The
estimated model-error vector is further used as a signal synthesis adaptive correction to the nom-
inal control input to achieve maximum performance. This control approach utilizes a Kalman
filter in the feedback loop for simultaneously estimating the system states and the disturbance
term from measurements (Sorrells 1982, 1989, Davari and Chandramohan 2003). The estimated
states are then used to develop a nominal control law while the estimated disturbance term is
used to make necessary corrections to the nominal control input to minimize the effects of both
system uncertainties and the external disturbance. There are several advantages of implementing
the Kalman filter in the DAC approach: i) tuning of the estimator parameters, such as the process
noise matrix, can be done easily unlike conventional DAC approaches in which the adaptation
involves the entire feedback gain, ii) the estimated disturbance term is a natural byproduct of
state estimation, and iii) the Kalman filter can be used to filter noisy measurements.
It is a well-known fact that the closed-loop performance and the stability of the Kalman

filter-based DAC approach depends on the accuracy of the estimated disturbance term. Since
the dynamics of the disturbance term is unknown, the process noise covariance associated with
the disturbance term is used to empirically tune the Kalman filter to yield accurate estimates.
Although the Kalman filter-based DAC approach has been successfully utilized for practical
applications, there has not been any rigorous stochastic stability analysis to reveal the interde-
pendency between the estimator process noise covariance and controlled system stability. The
first main contribution of this paper is a detailed stability analysis, which examines the explicit
dependency of the controlled system’s closed-loop stability on the disturbance term process
noise covariance and the measurement noise covariance. Since the system under consideration is
stochastic in nature, the notion of stability is depicted in two separate fashions. The first method
deals with moment stability and the second technique considers stability in a probabilistic sense.
Stochastic stability analysis on the Kalman filter-based DAC approach indicates that the

effectiveness of the proposed control scheme depends on the estimator parameters such as the
process noise covariance matrix. The stability analysis also indicates that the DAC scheme is
most effective when the assumed process noise covariance satisfies a lower bound requirement
which depends on the system uncertainties. In general, it is difficult to select a stabilizing process
noise covariance for the broad type of uncertain systems considered here. One could always try
to select an extremely large value of process noise covariance that might stabilize the system
or even monotonically increase the process noise covariance matrix in an ad-hoc manner until
the system stabilizes. However, it is important to keep in mind that selecting a large process
noise covariance matrix would result in noisy control signal which could lead to problems such as
chattering. The second main contribution of this paper is the formulation of a stochastic adaptive
scheme for selecting the appropriate process noise covariance that would guarantee closed-loop
stability of the controlled system.
The structure of this paper is as follows. A detailed formulation of the stochastic DAC approach

for multi-input multi-output (MIMO) systems, followed by a stochastic stability analysis, is first
given. Next, an adaptive scheme is developed for the selection of stabilizing the disturbance
term process noise covariance. Simulation results are then presented where the proposed control
scheme is implemented on a two degree-of-freedom helicopter.

2 Disturbance Accommodating Controller Formulation

Let (Ω,F ,P) denote a probability space, where Ω is the sample space, F is a σ-field, and P is a
probability measure on the measurable space (Ω,F). Additionally, the elements of Ω are denoted
by ω and the members of F are called events. Now consider a linear time-invariant stochastic
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system of the following form:

Ẋ1(t) = Ā1X1(t) + Ā2X2(t), X1(t0) = X10

Ẋ2(t) = A3X1(t) +A4X2(t) +Bu(t) +W(t), X2(t0) = X20

(1)

Here, the stochastic state vector,
[
XT

1 (t) X
T
2 (t)

]T
= X(t) , X(t, ω) : [t0, tf ] × Ω 7→ ℜn, is an

n-dimensional random variable for fixed t. The state vectors, X1(t) and X2(t) are of dimensions
X1(t) , X1(t, ω) : [t0, tf ] × Ω 7→ ℜn−r and X2(t) , X2(t, ω) : [t0, tf ] × Ω 7→ ℜr, respectively.
The system given in (1) is in the typical kinematics-dynamics form, where the kinematics is
assumed to be fully known, i.e., the state matrices Ā1 ∈ ℜ(n−r)×(n−r) and Ā2 ∈ ℜ(n−r)×r are
precisely known. Uncertainty is only associated with the dynamics, i.e., the state and control
distribution matrices, A3 ∈ ℜr×(n−r), A4 ∈ ℜr×r, B ∈ ℜr×r, are assumed to be unknown. Also,
the input matrix, B is assumed to be nonsingular. Finally, the stochastic external disturbance
W(t) , W(t, ω) : [t0, tf ] × Ω 7→ ℜr is modeled as a linear time-invariant system driven by a
Gaussian white noise process, i.e.,

Ẇ(t) = L (X(t),W(t)) + V(t), W(t0) = 0r×1 (2)

where L(·) is an unknown linear operator and V(t) , V(t, ω) : [t0, tf ] × Ω 7→ ℜr, is assumed to
be zero-mean Gaussian white noise process, i.e., V(t) ∼ N

(
0,Qδ(τ)

)
. It is important to note

that the linear operator L(·) and the covariance of the white noise process V(t), are unknown.
The measurement equation is given as

Y(t) = CX(t) +V(t) (3)

where Y(t) , Y(t, ω) : [t0, tf ]×Ω 7→ ℜm is the measurement vector and C ∈ ℜm×n denotes the

known output matrix. The measurement noise, V(t) , V(t, ω) : [t0, tf ] × Ω 7→ ℜm, is assumed
to be zero-mean Gaussian white noise with known covariance, i.e., V(t) ∼ N

(
0, Rδ(τ)

)
.

The assumed (known) system matrices are given as A3m , A4m , and Bm. Now the external
disturbance and the model uncertainties can be lumped into a disturbance term, D(t) ∈ ℜr,
through

D(t) = ∆A1X1(t) + ∆A2X2(t) + ∆Bu(t) +W(t) (4)

where ∆A1 = (A3−A3m), ∆A2 = (A4−A4m) and ∆B = (B−Bm). Using this disturbance term
the true model can be written in terms of the known system matrices as follows:

Ẋ1(t) = Ā1X1(t) + Ā2X2(t)

Ẋ2(t) = A3mX1(t) +A4mX2(t) +Bmu(t) +D(t)
(5)

The control law, u(t), consists of a nominal control and a control correction term to minimize
the adverse effect of the disturbance term, D(t), i.e.,

u(t) = ū(t) + ũ(t) (6)

Here ū(t) is the nominal control and ũ(t) is the control correction term. For the purpose of anal-
ysis, the control correction term is selected to ensure the complete cancelation of the disturbance
term. Thus the disturbance accommodating control law can be written as

u(t) = ū(t)−B−1
m D(t) (7)
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The disturbance term is not known, but an estimator can be implemented in the feedback loop
to estimate the disturbance term online. Estimating the disturbance term requires knowledge
of its dynamic model. Since the dynamics of the disturbance term is not precisely known, the
disturbance term dynamics is modeled as

Ḋm(t) = ADmDm(t) +W(t), Dm(t0) = 0 (8)

where ADm is Hurwitz and W(t) , W(t, ω) : [t0, tf ] × Ω 7→ ℜr is zero-mean Gaussian white
noise process, i.e., W(t) ∼ N

(
0, Qδ(τ)

)
. Equation (8) is used solely in the estimator design to

estimate the true disturbance term. After constructing the assumed augmented state vector as

Zm(t) =
[
XT

1m(t) X
T
2m(t) D

T
m(t)

]T
, the assumed extended model of the system can be written as



Ẋ1m(t)

Ẋ2m(t)

Ḋm(t)


 =




Ā1 Ā2 0(n−r)×r
A3m A4m Ir×r

0r×(n−r) 0r×r ADm





X1m(t)
X2m(t)
Dm(t)


+



0(n−r)×r
Bm
0r×r


u(t) +



0(n−r)×1

0r×1

W(t)


 (9)

The zero elements in the disturbance term dynamics are assumed for sake of simplicity, however
the control formulation given here is also valid if nonzero elements are assumed. Equation (9)
can be written in terms of the appended state vector, Zm, as

Żm(t) = FmZm(t) +Dmu(t) +GW(t), Zm(t0) = [XT
10

XT
20

0T ]T (10)

where

Fm =




Ā1 Ā2 0(n−r)×r
A3m A4m Ir×r

0r×(n−r) 0r×r ADm


 , Dm =



0(n−r)×r
Bm
0r×r


 , G =

[
0n×r
Ir×r

]

Note that the uncertainty is only associated with the dynamics of the disturbance term. Let

Z(t) =
[
XT

1 (t) X
T
2 (t) D

T (t)
]T

and H = [C 0m×r]. Now the measured output equation can be
written as

Y(t) = HZ(t) +V(t) (11)

Though the disturbance term is unknown, an estimator such as a Kalman filter can be imple-
mented in the feedback loop to estimate the unmeasured system states and the disturbance term

from the noisy measurements. Let Ẑ(t) =
[
X̂T

1 (t) X̂
T
2 (t) D̂

T
(t)

]T
, now the estimator dynamics

can be written as

˙̂
Z(t) = FmẐ(t) +Dmu(t) +K(t)[Y(t)− Ŷ(t)], Ẑ(t0) = Zm(t0) (12)

where K(t) is the Kalman gain and Ŷ(t) = HẐ(t). The Kalman gain can be calculated as
K(t) = P (t)HTR−1, where P (t) is obtained by solving the continuous-time matrix differential
Riccati equation (Crassidis and Junkins 2004):

Ṗ (t) = FmP (t) + P (t)Fm
T − P (t)HTR−1HP (t) +GQGT , P (t0) (13)

Let Z(t) =
[
XT

1 (t) X
T
2 (t) D

T (t)
]T

, now the estimator dynamics can be rewritten as

˙̂
Z(t) = FmẐ(t) +Dmu(t) +K(t)H[Z(t)− Ẑ(t)] +K(t)V(t) (14)
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The estimator uses the assumed system model given in (10) for the propagation stage and the

actual measurements for the update stage, i.e., Ẑ(t) = E[Zm(t)|{Y(t0) . . .Y(t)}]. Due to system

uncertainties, the estimator in (14) is sub-optimal and the estimates Ẑ(t) may be biased.

Remark 1 : Accuracy of the estimates depends on Q which indicates how well the disturbance
term dynamics is modeled via (8). A large Q indicates that (8) is a poor model of the true
disturbance term dynamics and a small Q indicates that (8) is an accurate model of the true
disturbance term dynamics. Note that selecting a small Q, while having a poor model, would
results in inaccurate estimates.

The total control law, u(t), consists of a nominal control and necessary corrections to the
nominal control to compensate for the disturbance term as shown in (7). The nominal control is
assumed to be a state feedback control, where the feedback gain, Km ,

[
Km1

Km2

]
, is selected

so that (Am − BmKm) is Hurwitz, where

Am =

[
Ā1 Ā2

A3m A4m

]
and Bm =

[
0(n−r)×r
Bm

]

While the nominal controller guarantees the desired performance of the assumed model, the
second term, −D(t), in (7) ensures the complete cancelation of the disturbance term which
is compensating for the external disturbance and model uncertainties. Now the disturbance
accommodating control law can be written in terms of the estimated system states and the
estimated disturbance term as

u(t) = −
[
Km B−1

m

] [
X̂(t)

D̂(t)

]
= S Ẑ(t) (15)

where S , −
[
Km B−1

m

]
. Notice that Bm is assumed to be a nonsingular matrix. A summary of

the proposed control scheme is given in Table 1.

Table 1. Summary of Disturbance Accommodating Control Process

Plant Ẋ1(t) = Ā1X1(t) + Ā2X2(t)

Ẋ2(t) = A3mX1(t) +A4mX2(t) +Bmu(t) +D(t)

Y(t) = CX(t) +V(t)

Initialize Ẑ(t0), P (t0)

Estimator Gain Ṗ (t) = FmP (t) + P (t)Fm
T − P (t)HTR−1HP (t) +GQGT

K(t) = P (t)HTR−1

Estimate
˙̂
Z(t) = FmẐ(t) +Dmu(t) +K(t)

[
Y(t)− Ŷ(t)

]

Control Synthesis u(t) = −
[
Km B−1

m

]
Ẑ(t)

Remark 2 : It is important to note that if Q ≈ 0, then Dm(t) ≈ Dm(t0) = 0, and the total
control law given in (15) becomes just the nominal control. If the nominal control, ū(t), on the
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true plant would result in an unstable system, i.e., the matrix (A− BKm) is unstable, where

A =

[
Ā1 Ā2

A3 A4

]
and B =

[
0(n−r)×r

B

]

then selecting a small Q would also result in an unstable system. On the other hand, selecting
a large Q value would compel the estimator to completely rely upon the measurement signal
and therefore the noise associated with the measurement signal is directly transmitted into
the estimates. This could result in a noisy control signal which could lead to problems such
as chattering. Also note that as R, the measurement noise covariance, increases, the estimator
gain decreases and thus the estimator fails to update the propagated disturbance term based on
measurements. Thus, for a highly uncertain system, if the nominal control action on the true
plant would result in an unstable system, then selecting a small Q or a large R would also result
in an unstable closed-loop system.

If the estimator in (14) is able to obtain accurate estimates of the system states and the
disturbance term, then the control law in (15) guarantees the desired closed-loop performance.
The accuracy of the estimated system states and the disturbance term depends on the estimator
parameters such as the process noise covariance, Q, and the measurement noise covariance, R.
Thus the performance of the DAC approach presented here depends on the estimator design
parameters. A schematic representation of the proposed controller is given in figure. 1.

Ref. Signal

Nominal Controller
ū(t)

+
u(t)

Plant

W(t)

+

V(t)

Y(t)

Estimator

X̂(t)

−(Bm)−1D̂(t)

Figure 1. DAC Block Diagram

3 Stochastic Stability Analysis

Without loss of generality, the following assumption can be made about the external disturbance
model.

Assumption 3.1 : The linear operator, L(·), in the external disturbance term model in (2) is
assumed to be

L (X(t),W(t)) = Aw1
X1(t) +Aw2

X2(t) +Aw3
W(t) (16)

where Aw1
, Aw2

, and Aw3
are unknown matrices.

Based on equation (4), the true disturbance term dynamics can now be written as

Ḋ(t) = ∆A1Ẋ1(t) + ∆A2Ẋ2(t) + ∆Bu̇(t) + L (X(t),W(t)) + V(t) (17)
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Substituting the control law (15) the above equation can be written as

Ḋ(t) =∆A1Ẋ1(t) + ∆A2Ẋ2(t) + ∆BS
˙̂
Z(t) + L (X(t),W(t)) +V(t)

=∆A1

{
Ā1X1(t) + Ā2X2(t)

}
+∆A2

{
A3mX1(t) +A4mX2(t) +BmSẐ(t) +D(t)

}
+

∆BS
{
[Fm +DmS −K(t)H] Ẑ(t) +K(t)HZ(t) +K(t)V(t)

}
+

Aw1
X1(t) +Aw2

X2(t) +Aw3
W(t) + V(t)

Assume the output matrix can be partitioned as C ,
[
C1 C2

]
, and H can be written as H ,[

C1 C2 0m×r

]
. Thus K(t)HZ(t) = K(t)C1X1(t) + K(t)C2X2(t). Also note that W(t) can be

written as W(t) = D(t) − ∆A1X1(t) − ∆A2X2(t) − ∆Bu(t). Now the true disturbance term
dynamics can be written as

Ḋ(t) =
{
∆A1Ā1 +∆A2A3m +∆BSK(t)C1 +Aw1

−Aw3
∆A1

}
X1(t)+

{
∆A1Ā2 +∆A2A4m +∆BSK(t)C2 +Aw2

−Aw3
∆A2

}
X2(t)+

{∆BS [Fm +DmS −K(t)H] + ∆A2BmS −Aw3
∆BS} Ẑ(t)+

{∆A2 +Aw3
}D(t) + ∆BSK(t)V(t) + V(t)

Let ∆BSK(t)V(t) + V(t) = Wa(t), thus Wa(t) is also a zero-mean stochastic process with

E
[
Wa(t)W

T
a (t+ τ)

]
=

{
∆BSK(t)RKT (t)ST∆BT +Q

}
δ(τ) = Qa(t)δ(τ)

Notice Ḋ(t) is a linear function of the true extended system state, Z(t), the estimated states,

Ẑ(t), and the noise term, Wa(t). Thus the system in (1) is rewritten as the following extended
dynamically equivalent system:



Ẋ1(t)

Ẋ2(t)

Ḋ(t)


 =




Ā1 Ā2 0(n−r)×r
A3m A4m Ir×r
AD1

(t) AD2
(t) AD3

(t)





X1(t)
X2(t)
D(t)


+



0(n−r)×(n+r)

BmS
BD(t)


 Ẑ(t) +



0(n−r)×1

0r×1

Wa(t)


 (18)

where

AD1
(t) =

{
∆A1Ā1 +∆A2A3m +∆BSK(t)C1 +Aw1

−Aw3
∆A1

}

AD2
(t) =

{
∆A1Ā2 +∆A2A4m +∆BSK(t)C2 +Aw2

−Aw3
∆A2

}

AD3
(t) = {∆A2 +Aw3

}

and

BD(t) = {∆BS [Fm +DmS −K(t)H] + ∆A2BmS −Aw3
∆BS}

Equation (18) can be written in concise form as

Ż(t) = F (t)Z(t) +D(t)Ẑ(t) +GWa(t) (19)
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where

F (t) =




Ā1 Ā2 0(n−r)×r
A3m A4m Ir×r
AD1

(t) AD2
(t) AD3

(t)


 and D(t) =



0(n−r)×(n+r)

BmS
BD(t)




After substituting the control law, the estimator dynamics can be written as

˙̂
Z(t) = FmẐ(t) +DmSẐ(t) +K(t)H[Z(t)− Ẑ(t)] +K(t)V(t)

Let Z̃(t) = Z(t)− Ẑ(t) be the estimation error, then the error dynamics can be written as

˙̃
Z(t) = [Fm −K(t)H +∆F (t)]Z̃(t) + [∆F (t) + ∆D(t)]Ẑ(t) +GWa(t)−K(t)V(t) (20)

where △F (t) = F (t) − Fm and △D(t) = D(t) −DmS. Combining the error dynamics and the
estimator dynamics yields

[
˙̃
Z(t)
˙̂
Z(t)

]
=

[
(Fm −K(t)H +∆F (t)) (∆F (t) + ∆D(t))

K(t)H (Fm +DmS)

] [
Z̃(t)

Ẑ(t)

]
+

[
G −K(t)

0(n+r)×r K(t)

] [
Wa(t)
V(t)

]

(21)

or in a more compact form as

Ż(t) = Υ(t)Z(t) + Γ(t)G(t) (22)

where

Υ(t) =

[
(Fm −K(t)H +∆F (t)) (∆F (t) + ∆D(t))

K(t)H (Fm +DmS)

]
, Γ(t) =

[
G −K(t)

0(n+r)×r K(t)

]

Z(t) =

[
Z̃(t)

Ẑ(t)

]
, G(t) =

[
Wa(t)
V(t)

]

Although the Kalman filter-based DAC approach has been successfully utilized for practical
applications, there has not been any rigorous stochastic stability analysis to reveal the interde-
pendency between the estimator process noise covariance and controlled system stability. Since
the system under consideration is stochastic in nature, the notion of stability is depicted in two
separate fashions. The first method deals with moment stability; for the Gaussian stochastic
processes presented here, the first two moments are considered. The second technique considers
stability in a probabilistic sense.

3.1 First Moment Stability

In this section a detailed stability analysis which examines the explicit dependency of the con-
trolled system’s first moment stability or the mean stability on the estimator parameters, such
as the disturbance term process noise covariance Q, and the measurement noise covariance R, is
given. First, a few definitions regarding the closed-loop system’s mean stability are given. These
definitions and notations are first introduced for a system without any parameter uncertainties
and are used throughout the rest of this manuscript.
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3.1.1 System without Uncertainties

Here a system without any parameter uncertainties is considered, i.e., F (t) = Fm, D(t) =
DmS, and Wa(t) = W(t). If there is no model error, then the estimator is unbiased, i.e.,

E
[
¯̃
Z(t)

]
≡ µ ¯̃

Z
(t) = 0. Note that the overline is used to indicate the states of the system when

there is no model uncertainties. Now (21) may be written as



˙̃̄
Z(t)
˙̂̄
Z(t)


 =

[
Fm −K(t)H 0(n+r)×(n+r)

K(t)H Fm +DmS

][ ¯̃
Z(t)
¯̂
Z(t)

]
+

[
G −K(t)

0(n+r)×r K(t)

] [
W(t)
V(t)

]

where ¯̃
Z(t) and

¯̂
Z(t) denote the estimation error and estimated states when there is no model

error, respectively. Let Z̄(t) =
[
¯̃
ZT (t)

¯̂
ZT (t)

]T
and Ḡ(t) =

[
WT (t) VT (t)

]T
, now the above

equation can be written in a more compact form as

˙̄Z(t) = Ῡ(t)Z̄(t) + Γ(t)Ḡ(t) (23)

where

Ῡ(t) =

[
Fm −K(t)H 0(n+r)×(n+r)

K(t)H Fm +DmS

]

Notice that Ḡ(t) is a zero-mean Gaussian white noise process with

E[Ḡ(t)Ḡ
T
(t− τ)] =

[
Q 0r×m

0m×r R

]
δ(τ) = Λ̄δ(τ)

Since the first moment stability is of concern here, the first moment dynamics or the mean
dynamics is written as

E[ ˙̄Z(t)] = µ̇
Z̄
(t) = Ῡ(t)µ

Z̄
(t) (24)

Definition 3.2: Given M ≥ 1 and β ∈ R, the system in (23) is said to be (M,β)-stable in the
mean if

|Φ̄(t, t0)µZ̄
(t0)| ≤Meβ(t−t0)|µ

Z̄
(t0)|, ∀t ≥ t0 (25)

where Φ̄(t, t0) is the evolution operator generated by Ῡ(t) and | · | indicates the Euclidean norm,
i.e.,

|m| =
√
m2

1 +m2
2 + . . .

Since most applications involve the case where β ≤ 0, (M,β)-stability guarantees both a
specific decay rate of the mean response (given by β) and a specific bound on the transient
behavior of the mean (given by M).

Definition 3.3: If the stochastic system in (23) is (M,β)-stable in the mean, then the transient
bound of the system mean response for the exponential rate β is defined to be

Mβ = inf
{
M ∈ R;∀t ≥ t0 :‖ Φ̄(t, t0) ‖≤ Meβ(t−t0)

}
(26)
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Here ‖ · ‖ indicates the matrix two-norm, i.e.,

‖M ‖= σmax(M)

where σmax(·) denotes the maximum singular value.

As shown in the Theorem given below, the (M,β)-stability and the transient bound of the
system’s mean response are related to a continuous time Lyapunov matrix differential equation.

Theorem 3.4 : Assume there exists a bounded, continuously differentiable positive definite
matrix function P̄(t) satisfying the Lyapunov matrix differential equation

˙̄P(t) = Ῡ(t)P̄(t) + P̄(t)ῩT (t) + Γ(t)Λ̄ΓT (t), P̄(t0) (27)

then the system in (23) is (M,β)-stable in the mean and the transient bound Mβ of the system
mean response can be obtained as

M2
β ≤ sup

t≥t0

σmax(P̄(t))/σmin(P̄(t0)) (28)

where σmin(·) denotes the minimum singular value.

Proof Since Γ(t)Λ̄ΓT (t) ≥ 0 ∀t ≥ t0, the (M,β)-stability in the mean follows directly from the
existence of bounded positive definite solution, P̄(t), satisfying equation (27). Now the solution
to (27) can be written as

P̄(t) =Φ̄(t, t0)P̄(t0)Φ̄
T (t, t0) +

∫ t

t0

Φ̄(t, τ)Γ(τ)Λ̄ΓT (τ)Φ̄T (t, τ)dτ

Notice that ∀t ≥ t0, P̄(t) ≥ Φ̄(t, t0)P̄(t0)Φ̄
T (t, t0) ≥ σmin(P̄(t0))Φ̄(t, t0)Φ̄

T (t, t0), i.e.,

σmax(P̄(t)) ≥‖ Φ̄(t, t0)P̄(t0)Φ̄
T (t, t0) ‖≥ σmin(P̄(t0)) ‖ Φ̄(t, t0) ‖

2, t ≥ t0

Now (28) follows from

σmax(P̄(t))/σmin(P̄(t0)) ≥‖ Φ̄(t, t0) ‖
2, t ≥ t0

�

Remark 3 : Assume P̄(t0) is selected as P̄(t0) = E[Z̄(t0)Z̄
T
(t0)], then the positive definite

solution, P̄(t), satisfying equation (27) denotes the correlation matrix, i.e.,

P̄(t) = E[Z̄(t)Z̄
T
(t)]

Thus the transient bound of the system mean response can be obtained in terms of the bounded
correlation matrix.

Note that Γ(t)Λ̄ΓT (t) in (27) can be factored as shown below:

Γ(t)Λ̄ΓT (t) =

[(
GQGT +KRKT

)
−KRKT

−KRKT KRKT

]
=

[
GQGT −0

0 0

]
+

[
KRKT −KRKT

−KRKT KRKT

]

=

[
G
0

]
Q
[
GT 0

]
+

[
PHT

−PHT

]
R−1

[
HP −HP

]
= LQLT +N(t)R−1NT (t)
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where

L =

[
G
0

]
and N(t) =

[
P (t)HT

−P (t)HT

]

Thus (27) can be written as

˙̄P(t) = Ῡ(t)P̄(t) + P̄(t)ῩT (t) + LQLT +N(t)R−1NT (t) (29)

3.1.2 Uncertain System

In this subsection, the first moment stability of the perturbed system given in (22) is consid-
ered, i.e.,

Ż(t) = Ῡ(t)Z(t) + ∆Υ(t)Z(t) + Γ(t)G(t) (30)

where

∆Υ(t) =

[
∆F (t) (∆F (t) + ∆D(t))

0 0

]

The correlation matrix P(t) = E
[
Z(t)ZT (t)

]
satisfies the following matrix Lyapunov differential

equation:

Ṗ(t) =
(
Ῡ(t) + ∆Υ(t)

)
P(t) + P(t)

(
Ῡ(t) + ∆Υ(t)

)T
+ Γ(t)Λ(t)ΓT (t) (31)

where

Λ(t)δ(τ) = E[G(t)GT (t− τ)] =

[
Qa(t) 0r×m
0m×r R

]
δ(τ)

Assuming the nominal control action on the true plant would result in an unstable system, sta-
bility of extended uncertain system given in (30) depends on the disturbance term process noise
covariance, Q, and the measurement noise covariance, R. The Theorem given below indicates
that the stability of the extended uncertain system given in (30) is guaranteed if the selected Q
and R satisfies a lower and an upper bound, respectively.

Theorem 3.5 : The uncertain system in (30) is (M,β)-stable in the mean if

{
σmin(Q) + σmin(R

−1) ‖ N(t)NT (t) ‖ −1
}
‖ P̆(t) ‖−2 > 2 ‖ ∆Υ(t) ‖2, t ≥ t0 (32)

where P̆(t) satisfies the matrix differential equation

˙̆
P(t) = Ῡ(t)P̆(t) + P̆(t)ῩT (t)+ ‖ Q ‖ I+ ‖ N(t)R−1N(t)T ‖ I − P̆(t)∆ΥT (t)∆Υ(t)P̆(t) (33)

Proof For the linear time-varying system given in (30), uniform asymptotic stability in the mean
implies (M,β)-stability in the mean. In order to show the uniform asymptotic stability of the
mean, consider the mean dynamics of the system in (30):

µ̇Z(t) = Ῡ(t)µZ(t) + ∆Υ(t)µZ(t) (34)
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where E [Z(t)] = µZ(t). Construct the following Lyapunov candidate function:

V [µZ(t)] = µT
Z
(t)P̆−1(t)µZ(t) (35)

Note that the solution, P̆(t), of (33) is required to be a bounded positive definite matrix as long

as ∆Υ is norm-bounded (Abou-Kandil et al. 2003). Thus P̆−1(t) exists and V [µZ(t)] > 0 for all

µZ(t) 6= 0. Since P̆(t)P̆−1(t) = I, the time derivative of P̆(t)P̆−1(t) is 0:

d

dt

[
P̆(t)P̆−1(t)

]
=

˙̆P(t)P̆−1(t) + P̆(t)
˙̆P−1(t) = 0

Solving the above equation for
˙̆
P−1(t) and substituting (33) gives

˙̆
P−1(t) = −P̆−1(t)

˙̆
P(t)P̆−1(t)

= −P̆−1(t)Ῡ(t)− ῩT (t)P̆−1(t)−
{
‖ Q ‖ + ‖ N(t)R−1N(t)T ‖

}
P̆−1(t)P̆−1(t)

+ ∆ΥT (t)∆Υ(t)

Now the time derivative of (35) can be written as

V̇ [µZ(t)] =µ̇TZ P̆−1µZ + µTZ
˙̆
P−1µZ + µTZ P̆−1µ̇Z

=[ῩµZ +∆ΥµZ ]T P̆−1µZ − µT
Z
P̆−1ῩµZ − µT

Z
ῩT P̆−1µZ−

{
‖ Q ‖ + ‖ NR−1NT ‖

}
µTZ P̆−2µZ + µTZ∆ΥT∆ΥµZ + µTZ P̆−1[ῩµZ +∆ΥµZ ]

=µT
Z
∆ΥT P̆−1µZ + µT

Z
P̆−1∆ΥµZ −

{
‖ Q ‖ + ‖ NR−1NT ‖

}
µT
Z
P̆−2µZ

+ µTZ∆ΥT∆ΥµZ

=µTZ

{
∆ΥT P̆−1 + P̆−1∆Υ−

{
‖ Q ‖ + ‖ NR−1NT ‖

}
P̆−2 +∆ΥT∆Υ

}
µZ

Asymptotic stability in the first moment is guaranteed if

{
∆ΥT P̆−1 + P̆−1∆Υ−

{
‖ Q ‖ + ‖ NR−1NT ‖

}
P̆−2 +∆ΥT∆Υ

}
< 0

Note

[
∆ΥT − P̆−1

] [
∆ΥT − P̆−1

]T
≥ 0 ⇒ ∆ΥT∆Υ+ P̆−2 ≥ ∆ΥT P̆−1 + P̆−1∆Υ

Thus the above condition for asymptotic stability is satisfied as soon as

{
2∆ΥT∆Υ+ P̆−2 −

{
‖ Q ‖ + ‖ NR−1NT ‖

}
P̆−2

}
< 0

or

{
2P̆∆ΥT∆ΥP̆ + I −

{
‖ Q ‖ + ‖ NR−1NT ‖

}
I
}
< 0

Using the inequalities

‖ P̆ ‖2‖ ∆Υ ‖2 I ≥ P̆∆ΥT∆ΥP̆, σmin(Q) ≤‖ Q ‖, and σmin(R
−1) ‖ NNT ‖≤‖ NR−1NT ‖
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yields

2 ‖ P̆ ‖2‖ ∆Υ ‖2< σmin(Q) + σmin(R
−1) ‖ NNT ‖ −1

Hence the uniform asymptotic stability in the first moment is guaranteed if

2 ‖ ∆Υ(t) ‖2<
{
σmin(Q) + σmin(R

−1) ‖ N(t)NT (t) ‖ −1
}
‖ P̆(t) ‖−2, t ≥ t0

�

Remark 4 : The uncertain system in (30) is (M,β)-stable in the mean if the selected Q and R
satisfy the inequality in (32). Thus for a highly uncertain system, if the nominal control action
on the true plant would result in an unstable system, then selecting a small Q or a large R would
also result in an unstable closed-loop system.

3.2 Mean Square Stability

In this subsection the controlled system’s stability in the second moment or the mean square
stability is considered. It is shown here that the (M,β)-stability in the mean implies mean
square stability. More details on mean square stability can be found in Kushner (1967) and
Soong (1973).

Definition 3.6: A stochastic system of the following form Ż(t) = Υ(t)Z(t)+Γ(t)G(t) is mean
square stable if

lim
t→∞

E[ZT (t)Z(t)] < M (36)

where M is a constant square matrix whose elements are finite.

Note that E[ZT (t)Z(t)] = Tr {P(t)}, i.e.,

d

dt
E[Z(t)ZT (t)] = Ṗ(t) = Υ(t)P(t) + P(t)ΥT (t) + Γ(t)Λ(t)ΓT (t)

and the solution to the above equation can be written as

P(t) =

∫ t

−∞

Φ(t, τ)Γ(τ)Λ(τ)ΓT (τ)ΦT (t, τ)dτ

The (M,β)-stable in the mean implies the system matrix, Υ(t) = Ῡ(t) + ∆Υ(t), generates an
exponentially stable evolution operator, and therefore P(t) has a bounded solution (Abou-Kandil
et al. 2003). Therefore, for the system given in (30), (M,β)-stability in the mean implies mean
square stability.

3.3 Almost Sure Asymptotic Stability

The solution to the stochastic system given in (30) cannot be based on the ordinary mean square
calculus because the integral involved in the solution depends on G(t), which is of unbounded
variation (Soong and Grigoriu 1993). For the treatment of this class of problems, the stochastic
differential equation may be rewritten in Itô form as

dZ(t) =
[
Ῡ(t)Z(t) + ∆Υ(t)Z(t)

]
dt+ Γ(t)Λ1/2(t)dB(t)
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or simply as

dZ(t) = Υ(t)Z(t)dt+ Γ(t)Λ1/2(t)dB(t) (37)

where dB(t) is an increment of Brownian motion process with zero-mean, Gaussian distribution
and

E[dB(t)dBT (t)] = Idt (38)

The solution Z(t) of (37) is a semimartingale process that is also a Markov process (Grigoriu
2002). Details on the almost sure (a.s.) stability for the stochastic system in (37) is presented
in this section.

Definition 3.7: The linear stochastic system given in (37) is asymptotically stable with
probability 1, or almost surely asymptotically stable, if

P
(
Z(t) → 0 as t→ ∞

)
= 1 (39)

(M,β)-stability in the mean response implies that Υ(t) generates an asymptotically stable
evolution for the linear system in (37), but it does not imply almost sure asymptotic stability
due to the persistently acting disturbance. In fact, given Υ(t) generates an asymptotically stable
evolution, the necessary and sufficent condition for almost sure asymptotic stability is

lim
t→∞

‖ Γ(t) ‖2 log(t) = 0 (40)

A detailed proof of this argument can be found in Appleby (2002). Equation (40) constitutes the
sufficent condition for the almost sure asymptotic stability of a linear stochastic system given
(M,β)-stability in the mean.

4 Stabilizing Q and Transient Bound on Uncertain System

The Lyapunov analysis given in Theorem 3.5 indicates a lower bound requirement on the system
process noise covariance, Q, and an upper bound requirement on system measurement noise
covariance, R, in order for the controlled system to be (M,β)-stable in the mean. Since the
measurement noise covariance can be obtained from sensor calibration, the process noise matrix
Q is usually treated as a tuning parameter. This would compel one to select an extremely
large Q so that the stability is always guaranteed. Selecting a large Q value would force the
estimator to completely rely upon the measurement signal and therefore the noise associated
with the measurement signal is directly transmitted into the estimates. This could result in
a noisy control signal which could lead to problems such as chattering. This section shows a
systematic approach to select a stabilizing Q using the overbounding method of Petersen and
Hollot (Petersen and Hollot 1986, Douglas and Athans 1994).
Assume the structure of the uncertainty ∆Υ(t) is given as

∆Υ(t) =

l∑

i=1

ri(t)Υi (41)

where Υi is assumed to be a rank-one matrix of the form Υi = tie
T
i . In the above description,
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ri(t) is the i
th component of the vector r(t) ∈ R

l and is upper bounded by

r̄ ≥ sup
t≥t0

|ri(t)|, ∀ i ∈ {1, 2, . . . , l} (42)

Define matrices T and E as

T =

l∑

i=1

tit
T
i and E =

l∑

i=1

eie
T
i (43)

Lemma 4.1: If the uncertain matrix ∆Υ(t) has the structure given in (41), then the following
matrix inequality is valid for all matrices P∗(t) of appropriate dimensions:

P∗T (t)∆ΥT (t) + ∆Υ(t)P∗(t) ≤ r̄2T + P∗T (t)EP∗(t), ∀t ≥ t0 (44)

where r̄, T , and E are from (42) and (43).

Proof Substituting Υi = tie
T
i into (41) yields,

∆Υ(t)P∗(t) + P∗T (t)∆ΥT (t) =
l∑

i=1

{
ri(t)tie

T
i P

∗(t) + ri(t)P
∗T (t)eit

T
i

}

Notice

[
ri(t)ti − P∗T (t)ei

] [
ri(t)ti − P∗T (t)ei

]T
≥ 0

Thus

r2i (t)tit
T
i + P∗T (t)eie

T
i P

∗(t) ≥ ri(t)tie
T
i P

∗(t) + ri(t)P
∗T (t)eit

T
i

and

l∑

i=1

{
r2i (t)tit

T
i + P∗T (t)eie

T
i P

∗(t)
}
≥

l∑

i=1

{
ri(t)tie

T
i P

∗(t) + ri(t)P
∗T (t)eit

T
i

}

Now substituting for T and E yields

r̄2T + P∗T (t)EP∗(t) ≥ ∆Υ(t)P∗(t) + P∗T (t)∆ΥT (t)

�

A computationally feasible procedure for the calculation of a stabilizing Q is given next.

Theorem 4.2 : Assume the uncertain matrix ∆Υ(t) has the structure given in (41) and the
process noise covariance, Q∗, is selected so that the following matrix differential Riccati equation
has a bounded positive definite matrix solution, P̄∗(t):

˙̄P∗(t) = Ῡ(t)P̄∗(t) + P̄∗(t)ῩT (t)− γ̄P̄∗(t)P̄∗(t) +R
(
Q∗, R−1

)
(45)

and

R
(
Q∗, R−1

)
≥ γ̄P̄∗(t)P̄∗(t) + r̄2T + P∗T (t)EP∗(t), ∀t ≥ t0 (46)
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where γ̄ is a positive constant and R
(
Q∗, R−1

)
denotes a positive definite matrix function. Then,

the uncertain system in (30) is (M,β)-stable in the mean and

M2
β ≤ sup

t≥t0

σmax

(
P̄∗(t)

)
/σmin

(
P̄∗(t0)

)
(47)

where Mβ represents the transient bound of the uncertain system’s mean response.

Proof Since Ῡ(t) is assumed to generate an exponentially stable evolution operator, there exists
a bounded positive definite matrix, P̄∗(t), that satisfies equation (45). Note that (45) can be
written as

˙̄P∗(t) =
[
Ῡ(t) + ∆Υ(t)

]
P̄∗(t) + P̄∗(t)

[
Ῡ(t) + ∆Υ(t)

]T
− γ̄P̄∗(t)P̄∗(t) +R

(
Q∗, R−1

)

−∆Υ(t)P̄∗(t)− P̄∗(t)∆ΥT (t)

The solution to above equation is

P̄∗(t) = Φ(t, t0)P̄
∗(t0)Φ

T (t, t0) +

∫ t

t0

Φ(t, τ)
{
R

(
Q∗, R−1

)
− γ̄P̄∗(τ)P̄∗(τ)−

∆Υ(τ)P̄∗(τ)− P̄∗(τ)∆ΥT (τ)
}
ΦT (t, τ)dτ

where Φ(t, t0) is the evolution operator generated by Υ(t) = Ῡ(t)+∆Υ(t). Based on Lemma 4.1
and the matrix inequality equation (46)

R
(
Q∗, R−1

)
− γ̄P̄∗(t)P̄∗(t)−∆Υ(t)P̄∗(t)− P̄∗(t)∆ΥT (t) ≥ 0

Thus

P̄∗(t) ≥ Φ(t, t0)P̄
∗(t0)Φ

T (t, t0) ≥ σmin

(
P̄∗(t0)

)
Φ(t, t0)Φ

T (t, t0)

Now (47) follows from

σmax

(
P̄∗(t)

)
/σmin

(
P̄∗(t0)

)
≥‖ Φ(t, t0) ‖

2

Therefore, Φ(t, t0) generates an exponentially stable evolution. �

Assuming the system uncertainties can be written in the form given in (41), a stabilizing
process noise covariance, Q∗, can be calculated. Notice that bounds on the system uncertainties
used here may be highly conservative and therefore it may result in an extremely large value of
Q. As mentioned earlier, selecting a large Q results in a noisy control signal and it could lead to
problems such as chattering. Also note that obtaining the upper bound r̄ is rather difficult since
the system uncertainties, ∆F (t) and ∆D(t), may depend on the estimator gain, K(t). Thus
increasing the process noise covariance would also increase the upper bound on the uncertainty,
i.e., r̄. Finally, the reader should realize that the dependency of system uncertainties on the
estimator gain is eliminated if the control distribution matrix is precisely known, i.e., ∆B = 0.
For more details, please refer to (18).
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5 Adaptive Scheme

After substituting the disturbance accommodating control law, u(t) = SẐ(t), the plant dynamics
in (1) can written as

Ẋ(t) = AX(t) + B
[
SẐ(t) +B−1W(t)

]
(48)

and the estimator dynamics in (14) can be written as

˙̂
Z(t) = [Fm +DmS] Ẑ(t) +K(t)Ỹ(t) (49)

where Ỹ(t) = [Y(t)−Ŷ(t)]. LetXext(t) =
[
XT

1 (t) X
T
2 (t) W

T (t)
]T

, now based on assumption 3.1,
the controlled plant in (48) can be written as

Ẋext(t) = AextXext(t) + BextSẐ(t) +GV(t) (50)

where

Aext =



Ā1 Ā2 0(n−r)×r
A3 A4 Ir×r
Aw1

Aw2
Aw3


 and Bext =



0(n−r)×r

B
0r×r




The following assumptions are now made.

Assumption 5.1 : The pair (Aext,Bext) is controllable and the pair (Aext,H) is observable.

Assumption 5.2 : There exist an r × m matrix Π such that ΠTΠ ≥ Im×m, i.e., m ≤ r. If
m > r, then the r-outputs considered here are selected such that the corresponding (Aext,H) is
observable.

Assumption 5.3 : There exists an m×m matrix R̄ > 0 such that ∀t ≥ t0, we have

E
[
Ỹ (t)Ỹ T (t)

]
≥ R̄

Based on assumptions 5.1, 5.2, and 5.3, an adaptive scheme for selecting the stabilizing process
noise covariance matrix can be developed as shown next.

Theorem 5.4 : Given assumptions 5.1, 5.2, and 5.3, the controlled system is mean square
stable, E[X(t)] ∈ L2 ∩ L∞ and X(t) is asymptotically stable in the first moment, i.e.,

lim
t→∞

E [X(t)] = 0

if the process noise covariance is updated online using the adaptive law

dQ(t) =
{
AQQ(t) +Q(t)ATQ + γΠỸ(t)ỸT (t)ΠT

}
dt (51)

where AQ is an r×r negative definite matrix such that 0 < −2Tr {AQ} ≤ 1 and γ is the adaptive
gain.

Proof of this theorem is based on the following lemmas.

Lemma 5.5: Consider the following linear stochastic system

Ż(t) = AZ(t) +U(t)
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If the matrix A generates an exponentially stable evolution operator ΦA(t − t0) and U(t) ∈ L2,
i.e.,

E

[∫ ∞

t0

|U(τ)|2dτ

]1/2
<∞

where | · | represents the Euclidean norm, then Z(t) ∈ L2 ∩ L∞ and

lim
t→∞

E [Z(t)] = 0

Proof The solution Z(t) can be written as

Z(t) = ΦA(t− t0)Z(t0) +

∫ t

t0

ΦA(t− τ)U(τ)dτ

Since ΦA(t− t0) is exponentially stable

‖ ΦA(t− t0) ‖ ≤ λ0e
−a(t−t0) ≤ λ0, ∀t ≥ t0

where ‖ · ‖ represents any induced matrix norm and λ0 and a are two positive constants. Thus

|Z(t)| ≤‖ ΦA(t− t0) ‖ |Z(t0)|+

∫ t

t0

‖ ΦA(t− τ) ‖ |U(τ)|dτ

≤ λ0e
−a(t−t0)|Z(t0)|+

∫ t

t0

λ0e
−a(t−τ)|U(τ)|dτ

≤ λ0e
−a(t−t0)|Z(t0)|+

∫ t

t0

λ0e
−(a−a0/2)(t−τ)e−a0/2(t−τ)|U(τ)|dτ

The last inequality is obtained by expressing e−a(t−τ) as e−(a−a0/2)(t−τ)e−a0/2(t−τ), where a0 < 2a
is a positive constant. Applying the Schwartz inequality yields

|Z(t)| ≤ λ0e
−a(t−t0)|Z(t0)|+ λ0

(∫ t

t0

e−(2a−a0)(t−τ)dτ

)1/2 (∫ t

t0

e−a0(t−τ)|U(τ)|2dτ

)1/2

Thus

|Z(t)| ≤ λ0e
−a(t−t0)|Z(t0)|+

λ0√
(2a− a0)

(∫ t

t0

e−a0(t−τ)|U(τ)|2dτ

)1/2

and

E [|Z(t)|] ≤ λ0e
−a(t−t0)E [|Z(t0)|] +

λ0√
(2a− a0)

E

[(∫ t

t0

e−a0(t−τ)|U(τ)|2dτ

)1/2
]

Therefore

lim
t→∞

E [Z(t)] = 0
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Also note that E[|Z(t)|] is bounded by

E[|Z(t)|] ≤ λ0e
−a(t−t0)E[|Z(t0)|] +

λ0√
(2a− a0)

E

[(∫ t

t0

|U(τ)|2dτ

)1/2
]

Since U(t) ∈ L2

E

[(∫ ∞

t0

|U(τ)|2dτ

)1/2
]
≤ E

[∫ ∞

t0

|U(τ)|2dτ

]1/2
<∞

Note that Z(t) ∈ L2 since

∫ ∞

t0

(∫ t

t0

e−a0(t−τ)|U(τ)|2dτ

)
dt ≤

∫ ∞

t0

|U(τ)|2
(∫ ∞

t0

e−a0(t−τ)dt

)
dτ ≤

1

a0

∫ ∞

t0

|U(τ)|2dτ

Finally note that

Z(t) ∈ L2 ⇒ E [Z(t)] ∈ L2

�

Lemma 5.6: Consider the following linear stochastic system

Ż(t) = AZ(t) +U(t)

Y(t) = CZ(t)

If (A,C) is observable, Y(t) ∈ L2 and U(t) ∈ L2, then Z(t) ∈ L2 ∩ L∞ and

lim
t→∞

E [Z(t)] = 0

Proof If (A,C) is observable, then there exist a matrixK such that Ao = A−KC is exponentially
stable. Now Ż(t) can be written as

Ż(t) = AoZ(t) +U(t) +KY(t)

Thus from Lemma. 5.5 one could conclude that Z(t) ∈ L2 ∩ L∞ and

lim
t→∞

E [Z(t)] = 0

�

The stability analysis given in section 3 reveals that selecting a sufficiently large process
noise covariance would guarantee asymptotic stability of the controlled system’s mean response.
Thus the adaptive law given in Theorem 5.4 increases the process noise covariance to ensure

that E
[
Ỹ(t)

]
∈ L2. Now based on the above lemmas the proof of Theorem 5.4 can be easily

obtained as shown next.

Proof

Let FỸ
t denotes a filtration generated by Ỹ(t), i.e.

E
[
Ỹ(s) | FỸ

t

]
= Ỹ(s) s ≤ t
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Now consider the following nonnegative function:

V (t0, t, Ẑ, Ỹ, P,Q) =

∫ t

t0

E
[
Ỹ(τ) | FỸ

t0

]T
E
[
Ỹ(τ) | FỸ

t0

]
dτ + E

[
Ẑ(t) | FỸ

t0

]T
XE

[
Ẑ(t) | FỸ

t0

]

+Tr

{
Q∗ −Q(t)

}
+Tr

{
P ∗
max − P (t)

}

where Q∗ ≥ Q(t) ∀t ≥ t0 is a stabilizing process noise covariance and P ∗
max is selected such that

P ∗
max ≥ P ∗(t), ∀t ≥ t0, where P

∗(t) may be obtained by solving the continuous-time matrix
differential Riccati equation:

Ṗ ∗(t) = FmP
∗(t) + P ∗(t)Fm

T − P ∗(t)HTR−1HP ∗(t) +GQ∗GT , P ∗(t0) = P0

Note that for any Q(t) ≤ Q∗, P (t) ≤ P ∗
max, where P (t) satisfies

Ṗ (t) = FmP (t) + P (t)Fm
T − P (t)HTR−1HP (t) +GQ(t)GT , P (t0) = P0 (52)

More details on this can be found in the comparison results given in chapter 4 of Abou-Kandil
et al. (2003). The matrix X is a positive definite matrix of appropriate dimensions and it is
selected so that it satisfies the following matrix inequality

X [Fm +DmS] + [Fm +DmS]
T X + XX +M ≤ 0

where M > 0. It is important to note that the expectation given in the above nonnegative
function is conditioned on the filtration at the lower time limit. For example, consider a time
instant s such that t0 ≤ s ≤ t, now V (s, t, Ẑ, Ỹ, P,Q) can be written as

V (s, t, Ẑ, Ỹ, P,Q) =

∫ t

s
E
[
Ỹ(τ) | FỸ

s

]T
E
[
Ỹ(τ) | FỸ

s

]
dτ + E

[
Ẑ(t) | FỸ

s

]T
XE

[
Ẑ(t) | FỸ

s

]

+Tr

{
Q∗ −Q(t)

}
+Tr

{
P ∗
max − P (t)

}

Now dV (s, t, Ẑ, Ỹ, P,Q) can be calculated as

dV (s, t, Ẑ, Ỹ, P,Q) =E
[
Ỹ(t) | FỸ

s

]T
E
[
Ỹ(t) | FỸ

s

]
dt+ E

[
dẐ(t) | FỸ

s

]T
XE

[
Ẑ(t) | FỸ

s

]
+

E
[
Ẑ(t) | FỸ

s

]T
XE

[
dẐ(t) | FỸ

s

]
−Tr

{
dQ(t)

}
− Tr

{
dP (t)

}

Note that

E
[
dẐ(t) | FỸ

s

]
= [Fm +DmS]E

[
Ẑ(t) | FỸ

s

]
dt+ E

[
K(t)Ỹ(t) | FỸ

s

]
dt
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Thus

dV (s, t, Ẑ, Ỹ, P,Q) = E
[
Ỹ(t) | FỸ

s

]T
E
[
Ỹ(t) | FỸ

s

]
dt− Tr

{
dQ(t)

}
− Tr

{
dP (t)

}
+

E
[
Ẑ(t) | FỸ

s

]T
[Fm +DmS]

T XE
[
Ẑ(t) | FỸ

s

]
dt+ E

[
K(t)Ỹ(t) | FỸ

s

]T
XE

[
Ẑ(t) | FỸ

s

]
dt+

E
[
Ẑ(t) | FỸ

s

]T
X [Fm +DmS]E

[
Ẑ(t) | FỸ

s

]
dt+ E

[
Ẑ(t) | FỸ

s

]T
XE

[
K(t)Ỹ(t) | FỸ

s

]
dt

Notice that for any two vectors a and b of same dimensions, the following inequality holds

aTa+ bTb ≥ aTb+ bTa

i.e.,

E
[
Ẑ(t) | FỸ

s

]T
XXE

[
Ẑ(t) | FỸ

s

]
+ E

[
K(t)Ỹ(t) | FỸ

s

]T
E
[
K(t)Ỹ(t) | FỸ

s

]
≥

E
[
K(t)Ỹ(t) | FỸ

s

]T
XE

[
Ẑ(t) | FỸ

s

]
+ E

[
Ẑ(t) | FỸ

s

]T
XE

[
K(t)Ỹ(t) | FỸ

s

]

Therefore

dV (s, t, Ẑ, Ỹ, P,Q) ≤ E
[
Ỹ(t) | FỸ

s

]T
E
[
Ỹ(t) | FỸ

s

]
dt− Tr

{
dQ(t)

}
− Tr

{
dP (t)

}
+

E
[
Ẑ(t) | FỸ

s

]T
{
X [Fm +DmS] + [Fm +DmS]

T X + XX

}
E
[
Ẑ(t) | FỸ

s

]
dt+

E
[
K(t)Ỹ(t) | FỸ

s

]T
E
[
K(t)Ỹ(t) | FỸ

s

]
dt

Now employing the Cauchy-Schwarz’s inequality gives

dV (s, t, Ẑ, Ỹ, P,Q) ≤ E
[
ỸT (t)Ỹ(t) | FỸ

s

]
dt+ E

[
ỸT (t)KT (t)K(t)Ỹ(t) | FỸ

s

]
dt− Tr

{
dQ(t)

}

+ E
[
Ẑ(t) | FỸ

s

]T
{
X [Fm +DmS] + [Fm +DmS]

T X + XX

}
E
[
Ẑ(t) | FỸ

s

]
dt−Tr

{
dP (t)

}

Substituting (51) and (52) yields

dV (s, t, Ẑ, Ỹ, P,Q) ≤ E
[
ỸT (t)Ỹ(t) | FỸ

s

]
dt+ E

[
ỸT (t)KT (t)K(t)Ỹ(t) | FỸ

s

]
dt

− E
[
Ẑ(t) | FỸ

s

]T
ME

[
Ẑ(t) | FỸ

s

]
dt− Tr

{
AQQ(t) +Q(t)ATQ + γΠỸ(t)ỸT (t)ΠT

}
dt

− Tr
{
FmP (t) + P (t)Fm

T − P (t)HTR−1HP (t) +GQ(t)GT
}
dt

Note that

−Tr
{
AQQ(t) +Q(t)ATQ

}
= −2Tr {AQQ(t)} ≤ −2Tr {AQ}Tr {Q(t)} ≤ Tr {Q(t)}

The first inequality is valid because −AQ is positive definite and the process noise covariance
Q(t) is positive semi-definite (Yang 2000). The last inequality holds since 0 < −2Tr {AQ} ≤ 1.



December 23, 2010 11:32 International Journal of Control IJC˙ADAC˙MainFile

22 J. George et al.

Also note that due to the nature of matrix G, we have

Tr
{
GQ(t)GT

}
= Tr {Q(t)}

Thus

dV (s, t, Ẑ, Ỹ, P,Q) ≤ Tr
{
E
[
Ỹ(t)ỸT (t) | FỸ

s

]}
dt+Tr

{
E
[
KT (t)K(t)Ỹ(t)ỸT (t) | FỸ

s

]}
dt

− E
[
Ẑ(t) | FỸ

s

]T
ME

[
Ẑ(t) | FỸ

s

]
dt− γTr

{
Ỹ(t)ỸT (t)ΠTΠ

}
dt

+Tr
{
P (t)HTR−1HP (t)

}
dt− 2Tr {FmP (t)} dt

≤ E
[(
1+ ‖ K(t)KT (t) ‖

)
Tr

{
Ỹ(t)ỸT (t)

}
| FỸ

s

]
dt− E

[
Ẑ(t) | FỸ

s

]T
ME

[
Ẑ(t) | FỸ

s

]
dt

− γTr
{
Ỹ(t)ỸT (t)

}
dt+Tr

{
P (t)HTR−1HP (t)

}
dt− 2Tr {FmP (t)} dt

The second inequality holds since

|Ỹ(t)|2 + |K(t)Ỹ(t)|2 ≤
(
1+ ‖ K(t)KT (t) ‖

)
|Ỹ(t)|2

Therefore E
[
dV (s, t, Ẑ, Ỹ, P,Q) | FỸ

s

]
can be written as

E
[
dV (s, t, Ẑ, Ỹ, P,Q) | FỸ

s

]
≤ E

[(
1+ ‖ K(t)KT (t) ‖

)
|Ỹ(t)|2 | FỸ

s

]
dt

− E
[
Ẑ(t) | FỸ

s

]T
ME

[
Ẑ(t) | FỸ

s

]
dt− γE

[
|Ỹ(t)|2 | FỸ

s

]
dt

+ E
[
Tr

{
P (t)HTR−1HP (t)− 2FmP (t)

}
| FỸ

s

]
dt

Combining the similar terms yields

E
[
dV (s, t, Ẑ, Ỹ, P,Q) | FỸ

s

]
≤ E

[(
1+ ‖ K(t)KT (t) ‖ −γ

)
|Ỹ(t)|2 | FỸ

s

]
dt

− E
[
Ẑ(t) | FỸ

s

]T
ME

[
Ẑ(t) | FỸ

s

]
dt+ E

[
Tr

{
P (t)HTR−1HP (t)− 2FmP (t)

}
| FỸ

s

]
dt

Let γ = γ1 + γ2 where γ1 is selected such that

γ1 ≥ 1+ ‖ K(t)KT (t) ‖ (53)

Thus

E
[
dV (s, t, Ẑ, Ỹ, P,Q) | FỸ

s

]
≤ −γ2Tr

{
E
[
Ỹ(t)ỸT (t) | FỸ

s

]}
dt−

E
[
Ẑ(t) | FỸ

s

]T
ME

[
Ẑ(t) | FỸ

s

]
dt+ E

[
Tr

{
P (t)HTR−1HP (t)− 2FmP (t)

}
| FỸ

s

]
dt

Now based on assumption 5.3, we have

E
[
dV (s, t, Ẑ, Ỹ, P,Q) | FỸ

s

]
≤ −E

[
Ẑ(t) | FỸ

s

]T
ME

[
Ẑ(t) | FỸ

s

]
dt+

E
[
Tr

{
P (t)HTR−1HP (t)− 2FmP (t)

}
− γ2Tr

{
R̄
}
| FỸ

s

]
dt
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Finally note that E
[
dV (s, t, Ẑ, Ỹ, P,Q) | FỸ

s

]
≤ 0 if

γ2 ≥ Tr
{
P (t)HTR−1HP (t)− 2FmP (t)

}
Tr

{
R̄
}−1

(54)

Assuming Ỹ(t0) is precisely known yields,

E
[
Ỹ(t) | FỸ

t0

]
= E

[
Ỹ(t)

]

Thus selecting γ1 and γ2 according to Eqs. (53) and (54) yields

E
[
V (t0, t, Ẑ, Ỹ, P,Q)

]
− V (t0, t0, Ẑ, Ỹ, P,Q) =

∫ t

t0

E
[
dV (t0, τ, Ẑ, Ỹ, P,Q)

]
≤ 0

Therefore

E
[
V (t0, t, Ẑ, Ỹ, P,Q)

]
≤ ẑT (t0)X ẑ(t0) + Tr

{
Q∗ −Q(t0)

}
+Tr

{
P ∗
max − P (t0)

}

Also note

E
[
V (s, t, Ẑ, Ỹ, P,Q) | FỸ

s

]
− V (t0, s, Ẑ, Ỹ, P,Q) =

∫ t

s
E
[
dV (s, τ, Ẑ, Ỹ, P,Q) | FỸ

s

]
≤ 0

Thus

E
[
V (s, t, Ẑ, Ỹ, P,Q) | FỸ

s

]
≤ V (t0, s, Ẑ, Ỹ, P,Q)

Now the properties of V (t0, t, Ẑ, Ỹ, P,Q) may be summarized as

(i) V (t0, t, Ẑ, Ỹ, P,Q) ≥ 0

(ii) E
[
V (t0, t, Ẑ, Ỹ, P,Q)

]
<∞

(iii) E
[
V (t0, t, Ẑ, Ỹ, P,Q) | FỸ

s

]
≤ V (t0, s, Ẑ, Ỹ, P,Q), s ≤ t

(iv) V (t0, t, Ẑ, Ỹ, P,Q) is adapted to FỸ
t

These properties imply that V (t0, t, Ẑ, Ỹ, P,Q) is a nonnegative FỸ
s -supermartingale (Kushner

1967, Liptser and Shiryayev 1989) and the nonnegative supermartingale probability inequality
yields (Doob 1953)

P

(
sup
t≥t0

V (t0, t, Ẑ, Ỹ, P,Q) ≥ λ
)
≤

ẑT (t0)X ẑ(t0) + Tr

{
Q∗ −Q(t0)

}
+Tr

{
P ∗
max − P (t0)

}

λ

where λ > 0 is any positive constant. Thus selecting sufficiently large λ yields

P

(
sup
t≥t0

V (t0, t, Ẑ, Ỹ, P,Q) <∞
)
= 1
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That is, V (t0, t, Ẑ, Ỹ, P,Q) is almost surely bounded. Note V (t0, t, Ẑ, Ỹ, P,Q) is defined as

V (t0, t, Ẑ, Ỹ, P,Q) =

∫ t

t0

E
[
Ỹ(τ)

]T
E
[
Ỹ(τ)

]
dτ + E

[
Ẑ(t)

]T
XE

[
Ẑ(t)

]

+Tr

{
Q∗ −Q(t)

}
+Tr

{
P ∗
max − P (t)

}

Therefore

V (t0, t, Ẑ, Ỹ, P,Q) ∈ L∞ a.s. =⇒ E
[
Ỹ(t)

]
∈ L2, Q(t) ∈ L∞ and P (t) ∈ L∞ a.s.

Since P (t) is a.s. bounded, the estimator gain, K(t) = P (t)HTR−1, is also a.s. bounded. Thus
there exist a k∗ such that

P

(
sup
t≥t0

‖ K(t) ‖> k∗
)

= 0

The estimator dynamics is given as

˙̂
Z(t) = [Fm +DmS] Ẑ(t) +K(t)Ỹ(t)

Since [Fm +DmS] generates an exponentially stable evolution operator, and since E[Ỹ(t)] ∈ L2,

based on Lemma 5.5, it can be shown that E[Ẑ(t)] ∈ L2 ∩ L∞, and

lim
t→∞

E
[
Ẑ(t)

]
= 0

Since E[Ỹ(t)] ∈ L2,

E[Ẑ(t)] ∈ L2 =⇒ E[Y(t)] ∈ L2

Now given the observability assumption, based on Lemma 5.6, it can be shown that E[X(t)] ∈
L2 ∩ L∞, and

lim
t→∞

E [X(t)] = 0

Finally note that the controlled closed-loop system can be written as

[
Ẋext(t)
˙̂
Z(t)

]
=

[
Aext BextS
K(t)H {Fm +DmS −K(t)H}

] [
Xext(t)

Ẑ(t)

]
+

[
GV(t)

K(t)V(t)

]
(55)

Note that the closed-loop state matrix

FCL(t) =

[
Aext BextS
K(t)H {Fm +DmS −K(t)H}

]

is bounded. Also, the asymptotic stability of E[Xext(t)] and E[Ẑ(t)] implies that the matrix,
FCL(t), generates an asymptotically stable evolution operator, ΦCL(t, t0), i.e.,

lim
t→∞

‖ΦCL(t, t0)‖ = 0
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Equation (55) can be written in Itô form as

dXCL(t) = FCL(t)XCL(t)dt+ ΓCL(t)dBCL(t) (56)

where

ΓCL(t) =

[
G 0
0 K(t)

]
and E

[
dBCL(t)dB

T
CL(t)

]
=

[
Q 0
0 R

]
dt = QCLdt

Remark 5 : It is important to note that if one wishes to express (55) in Stratonovich form, the
results given here holds since we are considering linear stochastic differential equations with state
free diffusion term and the solution obtained from the Stratonovich integral equation converges
a.s. and uniformly to that obtained from the Itô integral equation. For more details please refer
to the Wong-Zakai theorem (Grigoriu 2002).

Now using Itô formula d
(
XCL(t)X

T
CL(t)

)
can be written as

d
(
XCL(t)X

T
CL(t)

)
= XCL(t)d (XCL(t))

T + d (XCL(t))X
T
CL(t) + ΓCL(t)QCLΓCL(t)dt

=
{
XCL(t)X

T
CL(t)F

T
CL(t) + FCL(t)XCL(t)X

T
CL(t) + ΓCL(t)QCLΓCL(t)

}
dt

+ ΓCL(t)dBCL(t)X
T
CL(t) +XCL(t)dB

T
CL(t)Γ

T
CL(t)

Thus

XCL(t)X
T
CL(t) = ΦCL(t, t0)XCL(t0)X

T
CL(t0)Φ

T
CL(t, t0) +

∫ t

t0

[
XCL(τ)

[
ΓCL(τ)dBCL(τ)

]T ]T

+

∫ t

t0

XCL(τ)
[
ΓCL(τ)dBCL(τ)

]T
+

∫ t

t0

ΦCL(t, τ)ΓCL(τ)QCLΓ
T
CL(τ)Φ

T
CL(t, τ)dτ

Therefore

E
[
XCL(t)X

T
CL(t)

]
= E

[
ΦCL(t, t0)XCL(t0)X

T
CL(t0)Φ

T
CL(t, t0)

+

∫ t

t0

ΦCL(t, τ)ΓCL(τ)QCLΓ
T
CL(τ)Φ

T
CL(t, τ)dτ

]

Since ΦCL(t, t0) is an asymptotically stable evolution operator and ΓCL(t) is bounded, it can be
easily shown that the closed-loop system is mean square stable, i.e.,

lim
t→∞

E[XCL(t)X
T
CL(t)] < M

where M is a constant square matrix whose elements are finite (Soong 1973). �

Even though the initial process noise covariance, Q(t0), may not be the stabilizing Q, the
adaptive law given in (51) can be used to update the process noise covariance online so that the
controlled system is asymptotically stable. A schematic representation of the proposed adaptive
controller is given in figure 2.

6 Simulation Results

For simulation purposes, consider a two degree-of-freedom helicopter that pivots about the pitch
axis by angle θ and about the yaw axis by angle ψ. As shown in figure 3, pitch is defined positive
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Ref.

Nominal Controller
ū(t)

-
u(t)

Plant

W(t)

+

V(t)

Y(t)

Estimator

X̂(t)

(Bm)−1D̂(t)

Adaptive Law
Q(t)

Figure 2. Adaptive DAC Block Diagram

when the nose of the helicopter goes up and yaw is defined positive for a counterclockwise
rotation. Also in figure 3, there is a thrust force Fp acting on the pitch axis that is normal to the
plane of the front propeller and a thrust force Fy acting on the yaw axis that is normal to the
rear propeller. Therefore a pitch torque is being applied at a distance rp from the pitch axis and
a yaw torque is applied at a distance ry from the yaw axis. The gravitational force, Fg, generates
a torque at the helicopter center of mass that pulls down on the helicopter nose. As shown in
figure 3, the center of mass is a distance of lcm from the pitch axis along the helicopter body
length.

Figure 3. Two Degree of Freedom Helicopter

After linearizing about θ(t0) = ψ(t0) = θ̇(t0) = ψ̇(t0) = 0, the helicopter equations of motion
can be written as

(Jeq,p +mhelil
2
cm)θ̈(t) = KppVm,p(t) +KpyVm,y(t)−Bpθ̇(t) +W1(t) (57a)

(Jeq,y +mhelil
2
cm)ψ̈(t) = KyyVm,y(t) +KypVm,p(t)−Byψ̇(t) +W2(t) (57b)

A detailed description of system parameters and assumed values are given in Table 2. The system
states are the pitch and yaw angles and their corresponding rates, i.e., θ(t), ψ(t), θ̇(t), and ψ̇(t).
The control input to the system are the input voltages of the pitch and yaw motors, Vm,p and
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Vm,y, respectively. The external disturbances are denoted as W1(t) and W2(t). Let X1(t) =

Table 2. Two Degree-of-Freedom Helicopter Model Parameters

System Assumed True
Parameter Description Values Values Unit

Bp Equivalent viscous damping about pitch axis 0.8000 1 N/V

By Equivalent viscous damping about yaw axis 0.3180 -0.3021 N/V

Jeq,p Total moment of inertia about yaw pivot 0.0384 0.0288 Kg·m2

Jeq,y Total moment of inertia about pitch pivot 0.0432 0.0496 Kg·m2

Kpp Trust torque constant acting on pitch axis
from pitch motor/propeller 0.2041 0.2552 N ·m/V

Kpy Trust torque constant acting on pitch axis
from yaw motor/propeller 0.0068 0.0051 N ·m/V

Kyp Trust torque constant acting on yaw axis
from pitch motor/propeller 0.0219 0.0252 N ·m/V

Kyy Trust torque constant acting on yaw axis
from yaw motor/propeller 0.0720 0.0684 N ·m/V

mheli Total mass of the helicopter 1.3872 1.3872 Kg

lcm Location of center-of-mass 0.1857 0.1764 m

[
θ(t) ψ(t)

]T
, X2(t) =

[
θ̇(t) ψ̇(t)

]T
, u(t) =

[
Vm,p(t) Vm,y(t)

]T
, and W(t) =

[
W1(t)W2(t)

]T
. For

simulation purposes, the external disturbance W(t) is selected to be

Ẇ1(t) = 2.43θ̇(t)− 1.3ψ̇(t)−W1(t) + 2W2(t) + V1(t)

Ẇ2(t) = −0.34θ̇(t) + 1.92ψ̇(t) +W1(t)− 3W2(t) + V2(t)
(58)

and

[
V1(t)
V2(t)

]
= V(t) ∼ N

(
0, 1 × 10−2I2×2δ(τ)

)

Now the state-space representation of the plant can be written as

Ẋ1(t) = X2(t)

Ẋ2(t) = A4X2(t) +Bu(t) +W(t)

Ẇ(t) = Aw2
X2(t) +Aw3

W(t) + V(t)

(59)

where

Aw2
=

[
2.43 −1.3
−0.34 1.92

]
, Aw3

=

[
−1 2
1 −3

]
, A4 =

[
a1 0
0 a2

]
, B =

[
b1 b2
b3 b4

]
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and the system parameters are given as

a1 =
−Bp

(Jeq,p +mhelil2cm)
a2 =

−By
(Jeq,y +mhelil2cm)

b1 =
Kpp

(Jeq,p +mhelil2cm)
b2 =

Kpy

(Jeq,p +mhelil2cm)

b3 =
Kyp

(Jeq,y +mhelil2cm)
b4 =

Kyy

(Jeq,y +mhelil2cm)

The state-space representation of the assumed system model is

Ẋ1m(t) = X2m(t)

Ẋ2m(t) = A4mX2m(t) +Bmu(t)

where

A4m =

[
a1m 0
0 a2m

]
, Bm =

[
b1m b2m
b3m b4m

]

The measured output equations are given as

Y(t) = CX(t) +V(t)

where X(t) =
[
XT

1 (t) X
T
2 (t)

]T
and C =

[
I2×2 02×2

]
. Note that the disturbance term, D(t) =

[Dθ̇(t) Dψ̇(t)]
T , can be written as

Dθ̇(t) = △a1θ̇(t) +△b1u1(t) +△b2u2(t) +W1(t)

Dψ̇(t) = △a2ψ̇(t) +△b3u1(t) +△b4u2(t) +W2(t)

The assumed disturbance term dynamics is modeled as

Ḋθ̇m
(t) = −Dθ̇m

(t) +W1(t)

Ḋψ̇m
(t) = −3Dψ̇m

(t) +W2(t)

Let the extended assumed state vector be Zm(t) =
[
XT
m(t) Dθ̇m

(t) Dψ̇m
(t)

]T
. Now the assumed

extended state-space equation can be written as

Żm(t) = FmZm(t) +Dmu(t) +GW(t)

where

Fm =



02×2 I2×2 02×2

02×2 A4m I2×2

02×2 02×2 ADm


 , Dm =



02×2

Bm
02×2


 and G =

[
04×2

I2×2

]
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The estimator dynamics can be written as

˙̂
Z(t) = FmẐ(t) +Dmu(t) +K(t)[CX(t)−HẐ(t)] +K(t)V(t) (60)

where H = [C 02×2]. The nominal controller is a linear quadratic regulator which minimizes
the cost function

J =
1

2
E

[∫ ∞

0

(
(Xm(t)− xd)

TQX(Xm(t)− xd) + uT (t)Ruu(t)
)
dt

]
(61)

where xTd = [θd ψd 0 0], θd and ψd are some desired final values of θ and ψ, respectively, and
QX and Ru are two symmetric positive definite matrices. The nominal control that minimizes
the above cost function is

ū(t) = −Km(Xm(t)− xd)

where Km is the feedback gain. Now the disturbance accommodating control law can be written
in terms of the estimated states and the estimated disturbance term as

u(t) =
[
−Km − (Bm)

−1
]


X̂(t)− xd

D̂θ̇(t)

D̂ψ̇(t)


 = SẐ(t) +Kmxd

After substituting the above control law, the true extended system dynamics can be written as



Ẋ1(t)

Ẋ2(t)

Ḋ(t)


 =




02×2 I2×2 02×2

02×2 A4m I2×2

AD1
(t) AD2

(t) AD3
(t)





X1(t)
X2(t)
D(t)


+




02×6

BmS
BD1

(t)


 Ẑ(t) +




02×4

BmKm

BD2


xd +




02×1

02×1

Wa(t)




(62)

where AD1
(t) = ∆BSK(t), AD2

(t) = ∆A2A4m +Aw2
−Aw3

∆A2, AD3
(t) = ∆A2 +Aw3

,

BD1
(t) = {∆BS [Fm +DmS −K(t)H] + ∆A2BmS −Aw3

∆BS} ,

and BD2
(t) = ∆A2BmKm −Aw3

∆BKm. Here ∆B = B −Bm and ∆A2 = A4 −A4m .

Table 3. Nominal Controller/Estimator Matrices

LQR Weighting Matrices Covariance Matrices

Ru = 10× I2×2 Q =

[
q1 q2
q3 q4

]
, R = 10−3 × I2×2,

Qx =

[
500× I2×2 02×2

02×2 100× I2×2

]
P (t0) =



10−1 × I2×2 02×2 02×2

02×2 I2×2 02×2

02×2 02×2 10
2 × I2×2




Table 3 shows the nominal controller and estimator matrices. Since the measurement noise
covariance, R, can be obtained from sensor calibration, the process noise matrix, Q, is treated
as a tuning parameter. Based on the weighting matrices given in Table 3, the feedback gain is
calculated to be

Km =

[
7.0229 0.8239 1.6691 0.3310
−0.8239 7.0229 −0.0830 2.4486

]
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For simulation purposes the initial states are selected to be [θ0 ψ0 θ̇0 ψ̇0]
T =

[−45o 0 0 0]T and the desired states θd and ψd are selected to be 45o and 30o, respectively.
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Figure 4. Desired System Response

The desired response given in figure 4 is the system response to the nominal control when
there is no model error and external disturbance. For illustrative purposes, simulations are
conducted using the traditional disturbance accommodating control as well as the proposed
adaptive disturbance accommodating control. Results obtained using the traditional DAC is
given first.

6.1 DAC Results

Figure 5(a) shows the unstable system response obtained for the first simulation where the
disturbance term process noise covariance is selected to be Q = 103×I2×2. Figure 5(b) shows the
input corresponding to the first simulation scenario. Figures 6(a) and 6(b) contain the estimated
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Figure 5. Actual States and Input: Q = 103 × I2×2

disturbance term and the error between the desired states and the true states corresponding to
the first simulation. Note that the first simulation results given in figures 5 and 6 are unstable
due to the low value of Q selected.
A second simulation is conducted using Q = 105 × I2×2. The system response obtained for

the second simulation is given in figure 7. Figure 8 shows the estimated disturbance term and
state error obtained for the second simulation. Note that the estimated system rates, estimated
disturbance term and the control input are highly noisy because of the large Q selected.
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Figure 6. Disturbance Term and State Error: Q = 103 × I2×2

0 2 4 6 8 10
−50

0

50

100

 

 

θ
ψ

θ̇
ψ̇

Time(sec)

S
y
st
em

S
ta
te
s

(a)

0 2 4 6 8 10
−15

−10

−5

0

5

10

15

 

 

u1
u2

In
p
u
t

Time(sec)

(b)

Figure 7. Actual States and Input: Q = 105 × I2×2
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Figure 8. Disturbance Term and State Error: Q = 105 × I2×2

The results shown here indicate that for a small value of process noise covariance, the controlled
system is unstable. Though a large value of process noise covariance stabilizes the controlled
system, it also results in highly noisy estimates. The direct dependency of the controlled system’s
stability on the process noise covariance is more evident in the simulation results given next.
Combining the plant dynamics in (59) and the estimator dynamics in (60), the closed-loop
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system dynamics can be written as




Ẋ1(t)

Ẋ2(t)

Ẇ(t)
˙̂
Z(t)


 =




02×2 I2×2 02×2 02×6

02×2 A4 I2×2 BS
02×2 Aw2

Aw3
02×6

K(t) 02×2 02×2 (Fm +DmS −K(t)H)







X1(t)
X2(t)
W(t)

Ẑ(t)


+




02×1

BKmxd
V(t)

DmKmxd +K(t)V(t)




(63)

Since we are considering a time-invariant system here, the Kalman gain K(t) converges to its
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Figure 9. System Closed-loop Poles for Q Varying from 1× 102 to 1× 105

steady-state value fairly quickly. Using the steady-state Kalman gain, the stability of the closed-
loop system can be easily be verified. Figure 9 shows the closed-loop poles of the system for
different values of Q ranging from 1× 102 × I2×2 to 1× 105 × I2×2. Figure 9 indicates that the
controlled system is unstable for the initial small values of Q and the closed-loop poles migrate
into the stable region as Q increases.

6.2 Adaptive DAC Results

Results obtained by implementing the proposed adaptive disturbance accommodating scheme
is presented in this subsection. Based on the assumed system parameters and controller design
matrices given in Tables 2 and 3, the assumed state matrix, Am, the assumed input matrix, Bm,
and the DAC matrix, S, can be calculated as

Am =




0 0 1.00 0
0 0 0 1.00
0 0 −9.28 0
0 0 0 −3.50


 , Bm =




0 0
0 0

2.37 0.08
0.24 0.79


 , and

S =

[
−7.02 −0.82 −1.67 −0.33 −0.42 0.04
0.82 −7.02 0.08 −2.45 0.13 −1.28

]
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As shown in section 6, matrix ADm is given as

ADm =

[
−1 0
0 −3

]

Now the matrix [Fm +DmS] can be calculated as

[Fm +DmS] =




0 0 1.00 0 0 0
0 0 0 1.00 0 0

−16.56 −2.50 −13.22 −0.98 0 0
−1.04 −5.756 −0.34 −5.51 −0 0

0 0 0 0 −1.00 0
0 0 0 0 0 −3.00




Let M = 10−1 × I6, now the positive definite symmetric matrix X that satisfies the following
matrix inequality

X [Fm +DmS] + [Fm +DmS]
T X + XX +M ≤ 0

can be calculated as

X =




0.1117 0.0005 0.0035 −0.0011 −0.0000 −0.0000
0.0005 0.1165 −0.0008 0.0102 −0.0000 −0.0000
0.0035 −0.0008 0.0041 −0.0005 −0.0000 −0.0000
−0.0011 0.0102 −0.0005 0.0110 0.0000 −0.0000
−0.0000 −0.0000 −0.0000 0.0000 0.0513 −0.0000
−0.0000 −0.0000 −0.0000 −0.0000 −0.0000 0.0167




Since the number of inputs and the number of outputs are the same here, the matrix Π is
selected as the identity matrix I2×2. For the implementation of the adaptive law, the following
parameters are selected:

AQ = −0.25×I2×2 and γ =
(
‖ K(t) ‖ +Tr

{
P (t)HTR−1HP (t)− 2FmP (t)

}
Tr {R}−1 + 103

)

Three different simulation scenarios are considered here.

6.2.1 Simulation I

For the first simulation the initial process noise covariance is selected to be Q(t0) = 10−5 ×
I2×2. Figures 10(a) and 10(b) show the system response and the disturbance accommodating
control input obtained for the first simulation. Figures 11(a) and 11(b) contain the estimated
disturbance term and the error between the desired states and the true states corresponding to
the first simulation. Note that the first simulation results given in Figs. 10 and 11 indicate that
the adaptive scheme is able to stabilize and recover the desired performance despite the initial
unstable process noise covariance selected. The time varying process noise covariance obtained
for the first simulation is given in figure 12.

6.2.2 Simulation II

For the second simulation the initial process noise covariance is selected to be Q(t0) = I2×2.
Figures 13(a) and 13(b) show the system response and the disturbance accommodating control
input obtained for the second simulation. Figures 14(a) and 14(b) contain the estimated dis-
turbance term and the error between the desired states and the true states corresponding to the
second simulation. The simulation results given in Figs. 13 and 14 indicate that the adaptive
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Figure 10. Actual States and Input: Q(t0) = 10−5 × I2×2
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Figure 11. Disturbance Term and State Error: Q(t0) = 10−5 × I2×2
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Figure 12. Adaptive Process Noise Covariance: Q(t0) = 10−5 × I2×2

scheme is able to stabilize and recover the desired performance despite the initial unstable pro-
cess noise covariance selected. The time varying process noise covariance obtained for the second
simulation is given in figure 15.



December 23, 2010 11:32 International Journal of Control IJC˙ADAC˙MainFile

International Journal of Control 35

0 2 4 6 8 10
−150

−100

−50

0

50

100

150

200

 

 

θ
ψ

θ̇
ψ̇

Time(sec)

S
y
st
em

S
ta
te
s

(a)

0 2 4 6 8 10
−30

−25

−20

−15

−10

−5

0

5

10

15

20

 

 

u1
u2

In
p
u
t

Time(sec)

(b)

Figure 13. Actual States and Input: Q(t0) = I2×2
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Figure 14. Disturbance Term and State Error: Q(t0) = I2×2
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Figure 15. Adaptive Process Noise Covariance: Q(t0) = I2×2

6.2.3 Simulation III

For the third simulation the initial process noise covariance is selected to be Q(t0) = 105 ×
I2×2. Figures 16(a) and 16(b) show the system response and the disturbance accommodating
control input obtained for the third simulation. Figures 17(a) and 17(b) contain the estimated
disturbance term and the error between the desired states and the true states corresponding to
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Figure 16. Actual States and Input: Q(t0) = 105 × I2×2
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Figure 17. Disturbance Term and State Error: Q(t0) = 105 × I2×2

the third simulation. Figure 18 shows the time varying process noise covariance obtained for the
third simulation.
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Figure 18. Adaptive Process Noise Covariance: Q(t0) = 105 × I2×2

Figure 19 shows the time varying process noise covariance obtained for the three simulations.
Figure 19 indicates that, regardless of the initial matrix selected, the process noise covariance
settles down at its steady-state value, which is around 4 ∼ 5× 103 for the present scenario.
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(a) Q(t0) = 10−5 × I2×2
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(b) Q(t0) = I2×2
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Figure 19. Adaptive Process Noise Covariance Matrices

7 Conclusion

This paper presents the formulation of an observer-based stochastic disturbance accommodating
control approach for linear time-invariant multi-input multi-output systems which automatically
detects and minimizes the adverse effects of both model uncertainties and external disturbances.
Assuming all system uncertainties and external disturbance can be lumped in a disturbance
term, this control approach utilizes a Kalman estimator in the feedback loop for simultaneously
estimating the system states and the disturbance term from measurements. The estimated states
are then used to develop a nominal control law while the estimated disturbance term is used
to make necessary corrections to the nominal control input to minimize the effect of system
uncertainties and the external disturbances. The stochastic stability analysis conducted on the
controlled system reveals a lower bound requirement on the estimator design parameters, such
as the process noise covariance matrix and the measurement noise covariance matrix, in order to
ensure the controlled system stability. Since the measurement noise covariance can be obtained
from sensor calibration, the process noise matrix is treated as a tuning parameter. Based on the
stochastic Lyapunov analysis, an adaptive law is developed for updating the selected process
noise covariance online so that the controlled system is stable. The adaptive scheme introduced
here guarantees asymptotic stability in the mean and the mean square stability of the controlled
system. The simulation results given here explicitly reveal the direct dependency of the proposed
control scheme on the process noise covariance matrix. Since the nominal control action on the
true plant is unstable, selecting a very low process noise covariance resulted in an unstable
system. On the other hand, selecting a large value stabilized the system but resulted in a highly
noisy control input. The numerical simulations indicate that the adaptive scheme is able to
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stabilize and recover the desired performance despite selecting an initial unstable process noise
covariance. The results also indicate that regardless of the initial matrix selected, the process
noise covariance settles down to its steady-state value.
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